{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# GCD / Euclidean algorithm\n", "Explaination: https://brilliant.org/wiki/extended-euclidean-algorithm/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Returns the greatest common divisor of a and b.\n", "def gcd(a, b):\n", " if b > a:\n", " return gcd(b, a)\n", " if a % b == 0:\n", " return b\n", " return gcd(b, a % b)\n", "\n", "gcd(35,30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Back substitution / Extended euclidean algorithm\n", "Explaination: https://brilliant.org/wiki/extended-euclidean-algorithm/" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ax + by = gcd(a,b) ==> 35*1 + 10*-3 = gcd(35,10)\n", "\n", "gcd(35,10) = 5\n", "x = 1, y = -3\n" ] } ], "source": [ "def gcdExtended(a, b): \n", " # Base Case \n", " if a == 0 : \n", " return b,0,1\n", "\n", " gcd,x1,y1 = gcdExtended(b%a, a)\n", "\n", " # Update x and y using results of recursive call \n", " x = y1 - (b//a) * x1 \n", " y = x1 \n", "\n", " return gcd,x,y \n", "\n", "a, b = 35,10\n", "g, x, y = gcdExtended(a, b)\n", "print(f\"ax + by = gcd(a,b) ==> {a}*{x} + {b}*{y} = gcd({a},{b})\\n\")\n", "\n", "print(f\"gcd({a},{b}) = {g}\")\n", "print(f\"x = {x}, y = {y}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Modular inverse, A^-1\n", "Explanation: https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-inverses" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3 * 5 ≡ 1 (mod 7)\n", "Modular inverse for 3 (mod 7) is 5\n", "a^-1 = 5\n" ] } ], "source": [ "# Naive method of finding modular inverse for A (mod C) \n", "def inverse(a, c):\n", " for b in range(c):\n", " if (a*b)%c == 1: return b\n", " print(\"NO INVERSE FOUND\")\n", "\n", "a,c = 3,7\n", "b = inverse(a,c)\n", "\n", "print(f\"{a} * {b} ≡ 1 (mod {c})\")\n", "print(f\"Modular inverse for {a} (mod {c}) is {b}\")\n", "print(f\"a^-1 = {b}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Chineese remainder theorem\n", "Source: https://rosettacode.org/wiki/Chinese_remainder_theorem#Python" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "23\n" ] } ], "source": [ "from functools import reduce\n", "def crt(n, a):\n", " sum = 0\n", " prod = reduce(lambda a, b: a*b, n)\n", " for n_i, a_i in zip(n, a):\n", " p = prod // n_i\n", " sum += a_i * mul_inv(p, n_i) * p\n", " return sum % prod\n", "\n", "def mul_inv(a, b):\n", " b0 = b\n", " x0, x1 = 0, 1\n", " if b == 1: return 1\n", " while a > 1:\n", " q = a // b\n", " a, b = b, a%b\n", " x0, x1 = x1 - q * x0, x0\n", " if x1 < 0: x1 += b0\n", " return x1\n", "\n", "n = [3, 5, 7]\n", "a = [2, 3, 2]\n", "print(crt(n, a))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Euler function φ and Z*n\n", "From slides 2020-4135-l07 - Number Theory for Public Key Cryptography" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "φ(81) = 54 since the 54 items in Z*81 are each relatively prime to 81.\n", "Z*81 = [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80]\n" ] } ], "source": [ "# Relatively prime means that gcd equals 1\n", "def is_relative_prime(a,b):\n", " if b == 0 or a == 0: return False\n", " return gcd(a,b) == 1\n", "\n", "# The set of positive integers less than n and relatively prime \n", "# to n form the reduced residue class Z∗n.\n", "def z_star(n):\n", " r = []\n", " for i in range(1,n):\n", " if is_relative_prime(i,n):\n", " r.append(i)\n", " return r\n", "\n", "n = 81\n", "ar = z_star(n)\n", "e = len(ar)\n", "print(f\"φ({n}) = {e} since the {e} items in Z*{n} are each relatively prime to {n}.\")\n", "print(f\"Z*{n} = {ar}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Testing for primality\n", "From slides 2020-4135-l07 - Number Theory for Public Key Cryptography" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "137 True\n" ] } ], "source": [ "from math import sqrt\n", "# Inefficient, but accurate method\n", "def is_prime(n):\n", " if n % 2 == 0 and n > 2: \n", " return False\n", " return all(n % i for i in range(3, int(sqrt(n)) + 1, 2))\n", "\n", "print(137, is_prime(137))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1105 is composite\n" ] } ], "source": [ "# Fermat primality test\n", "\n", "# Inputs: \n", "# n: a value to test for primality;\n", "# k: a parameter that determines the number of \n", "# times to test for primality\n", "from random import randint\n", "def fermat_prime(n, k):\n", " for x in range(k):\n", " a = randint(2,n-2)\n", " # Fermat’s theorem says that if a number p is prime then \n", " # a^p−1 mod p = 1 for all a with gcd(a,p) = 1.\n", " if not (a**(n-1))%n == 1:\n", " return \"composite\"\n", " return \"probable prime\"\n", "\n", "n = 1105 # value to test for primality;\n", "k = 1 # number of times to test for primality\n", "\n", "print(f\"{n} is {fermat_prime(n,k)}\")\n", "\n", "# First few Carmichael numbers are: 561, 1105, 1729, 2465 \n", "# Will output probable prime for every a with gcd(a, n) = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Miller-Rabin\n", "n = 137\n", "k = 20\n", "\n", "from random import randint\n", "def miller_rabin(n):\n", " for O in range(k):\n", " d = n-1\n", " a = randint(2,n-2)\n", " x = (a**d) % " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Integer factorisation\n", "Given an integer, find its prime factors" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The factors of 641361 are [3, 7, 7, 4363], verified\n", "Manual test: True\n" ] } ], "source": [ "# Brute force solution\n", "def prime_factors(n):\n", " i = 2\n", " factors = []\n", " while i * i <= n:\n", " if n % i:\n", " i += 1\n", " else:\n", " n //= i\n", " factors.append(i)\n", " if n > 1:\n", " factors.append(n)\n", " return factors\n", "\n", "# Check if the numbers in array a is the factors of n\n", "def factor_test(a, n):\n", " k = 1\n", " for i in factors:\n", " k=k*i\n", " return k==n\n", "\n", "n = 641361\n", "factors = prime_factors(n)\n", "print(f\"The factors of {n} are {factors}, {'verified' if factor_test(factors, n) else 'ERROR'}\")\n", "\n", "print(\"Manual test:\", factor_test([3, 7, 7, 4363], 641361))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Discrete logarithm problem\n", "Given a prime `p` and an integer `y` with `0 < y < p`, find `x` such that \n", "```\n", "y = g^x mod p\n", "```\n", "\n", "No polynomial algorithims exists, but \"Baby-step giant-step\" is a reasonable one. \n", "\n", "Sources:\n", "- https://stackoverflow.com/a/1832648/5976426\n", "- https://en.wikipedia.org/wiki/Baby-step_giant-step\n", "- https://gist.github.com/0xTowel/b4e7233fc86d8bb49698e4f1318a5a73" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x = 2570\n", "y = g^x mod p ==> 34 = 7324^2570 mod 4363\n", "Test: True\n" ] } ], "source": [ "from math import ceil, sqrt\n", "\n", "def bsgs(g, y, p):\n", " '''\n", " Solve for x in y = g^x mod p given a prime p.\n", " If p is not prime, you shouldn't use BSGS anyway.\n", " '''\n", " N = ceil(sqrt(p - 1)) # phi(p) is p-1 if p is prime\n", "\n", " # Store hashmap of g^{1...m} (mod p). Baby step.\n", " tbl = {pow(g, i, p): i for i in range(N)}\n", "\n", " # Precompute via Fermat's Little Theorem\n", " c = pow(g, N * (p - 2), p)\n", "\n", " # Search for an equivalence in the table. Giant step.\n", " for j in range(N):\n", " h = (y * pow(c, j, p)) % p\n", " if h in tbl:\n", " return j * N + tbl[h]\n", "\n", " # Solution not found\n", " return None\n", "\n", "def disc_log_test(y, g, x, p):\n", " return y == (g**x) % p\n", "\n", "#y = 355407489\n", "#g = 7894352216\n", "#p = 604604729 # Must be prime\n", "\n", "# y = g^x mod p\n", "y = 34\n", "g = 7324\n", "p = 4363 # Must be prime\n", "\n", "x = bsgs(g, y, p)\n", "\n", "print(f\"x = {x}\")\n", "\n", "print(f\"y = g^x mod p ==> {y} = {g}^{x} mod {p}\")\n", "\n", "# Don't run the test with big numbers!\n", "if x < 10000: print(f\"Test: {disc_log_test(y,g,x,p)}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Block ciphers\n", "\n", "Notation:\n", "\n", "- `P`: Plaintext block (length n bits) \n", "- `C`: Ciphertext block (length n bits) \n", "- `K` : Key (length k bits)\n", "- `C = E(P, K)`: Encryption function \n", "- `P = D(C, K)`: Decryption function" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "54\n" ] } ], "source": [ "# Discarded code\n", "\n", "def z(n):\n", " return [i for i in range(n)]\n", "print(z(10))\n", "\n", "n = 81\n", "zn = z(n)\n", "rel_primes = list(filter(lambda x: is_relative_prime(x,n), zn))\n", "print(len(rel_primes))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }