Browse Source

Initial commit

master
Johannes Røsvik 2 years ago
commit
2f78cfe3f1
No known key found for this signature in database GPG Key ID: 8A47E30339E13FFD
  1. 1
      .gitignore
  2. 505
      TTM4135.ipynb

1
.gitignore

@ -0,0 +1 @@
.ipynb*

505
TTM4135.ipynb

@ -0,0 +1,505 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GCD / Euclidean algorithm\n",
"Explaination: https://brilliant.org/wiki/extended-euclidean-algorithm/"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Returns the greatest common divisor of a and b.\n",
"def gcd(a, b):\n",
" if b > a:\n",
" return gcd(b, a)\n",
" if a % b == 0:\n",
" return b\n",
" return gcd(b, a % b)\n",
"\n",
"gcd(35,30)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Back substitution / Extended euclidean algorithm\n",
"Explaination: https://brilliant.org/wiki/extended-euclidean-algorithm/"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ax + by = gcd(a,b) ==> 35*1 + 10*-3 = gcd(35,10)\n",
"\n",
"gcd(35,10) = 5\n",
"x = 1, y = -3\n"
]
}
],
"source": [
"def gcdExtended(a, b): \n",
" # Base Case \n",
" if a == 0 : \n",
" return b,0,1\n",
"\n",
" gcd,x1,y1 = gcdExtended(b%a, a)\n",
"\n",
" # Update x and y using results of recursive call \n",
" x = y1 - (b//a) * x1 \n",
" y = x1 \n",
"\n",
" return gcd,x,y \n",
"\n",
"a, b = 35,10\n",
"g, x, y = gcdExtended(a, b)\n",
"print(f\"ax + by = gcd(a,b) ==> {a}*{x} + {b}*{y} = gcd({a},{b})\\n\")\n",
"\n",
"print(f\"gcd({a},{b}) = {g}\")\n",
"print(f\"x = {x}, y = {y}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Modular inverse, A^-1\n",
"Explanation: https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-inverses"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3 * 5 ≡ 1 (mod 7)\n",
"Modular inverse for 3 (mod 7) is 5\n",
"a^-1 = 5\n"
]
}
],
"source": [
"# Naive method of finding modular inverse for A (mod C) \n",
"def inverse(a, c):\n",
" for b in range(c):\n",
" if (a*b)%c == 1: return b\n",
" print(\"NO INVERSE FOUND\")\n",
"\n",
"a,c = 3,7\n",
"b = inverse(a,c)\n",
"\n",
"print(f\"{a} * {b} ≡ 1 (mod {c})\")\n",
"print(f\"Modular inverse for {a} (mod {c}) is {b}\")\n",
"print(f\"a^-1 = {b}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chineese remainder theorem\n",
"Source: https://rosettacode.org/wiki/Chinese_remainder_theorem#Python"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23\n"
]
}
],
"source": [
"from functools import reduce\n",
"def crt(n, a):\n",
" sum = 0\n",
" prod = reduce(lambda a, b: a*b, n)\n",
" for n_i, a_i in zip(n, a):\n",
" p = prod // n_i\n",
" sum += a_i * mul_inv(p, n_i) * p\n",
" return sum % prod\n",
"\n",
"def mul_inv(a, b):\n",
" b0 = b\n",
" x0, x1 = 0, 1\n",
" if b == 1: return 1\n",
" while a > 1:\n",
" q = a // b\n",
" a, b = b, a%b\n",
" x0, x1 = x1 - q * x0, x0\n",
" if x1 < 0: x1 += b0\n",
" return x1\n",
"\n",
"n = [3, 5, 7]\n",
"a = [2, 3, 2]\n",
"print(crt(n, a))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler function φ and Z*n\n",
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"φ(81) = 54 since the 54 items in Z*81 are each relatively prime to 81.\n",
"Z*81 = [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80]\n"
]
}
],
"source": [
"# Relatively prime means that gcd equals 1\n",
"def is_relative_prime(a,b):\n",
" if b == 0 or a == 0: return False\n",
" return gcd(a,b) == 1\n",
"\n",
"# The set of positive integers less than n and relatively prime \n",
"# to n form the reduced residue class Z∗n.\n",
"def z_star(n):\n",
" r = []\n",
" for i in range(1,n):\n",
" if is_relative_prime(i,n):\n",
" r.append(i)\n",
" return r\n",
"\n",
"n = 81\n",
"ar = z_star(n)\n",
"e = len(ar)\n",
"print(f\"φ({n}) = {e} since the {e} items in Z*{n} are each relatively prime to {n}.\")\n",
"print(f\"Z*{n} = {ar}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Testing for primality\n",
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"137 True\n"
]
}
],
"source": [
"from math import sqrt\n",
"# Inefficient, but accurate method\n",
"def is_prime(n):\n",
" if n % 2 == 0 and n > 2: \n",
" return False\n",
" return all(n % i for i in range(3, int(sqrt(n)) + 1, 2))\n",
"\n",
"print(137, is_prime(137))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1105 is composite\n"
]
}
],
"source": [
"# Fermat primality test\n",
"\n",
"# Inputs: \n",
"# n: a value to test for primality;\n",
"# k: a parameter that determines the number of \n",
"# times to test for primality\n",
"from random import randint\n",
"def fermat_prime(n, k):\n",
" for x in range(k):\n",
" a = randint(2,n-2)\n",
" # Fermat’s theorem says that if a number p is prime then \n",
" # a^p−1 mod p = 1 for all a with gcd(a,p) = 1.\n",
" if not (a**(n-1))%n == 1:\n",
" return \"composite\"\n",
" return \"probable prime\"\n",
"\n",
"n = 1105 # value to test for primality;\n",
"k = 1 # number of times to test for primality\n",
"\n",
"print(f\"{n} is {fermat_prime(n,k)}\")\n",
"\n",
"# First few Carmichael numbers are: 561, 1105, 1729, 2465 \n",
"# Will output probable prime for every a with gcd(a, n) = 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Miller-Rabin\n",
"n = 137\n",
"k = 20\n",
"\n",
"from random import randint\n",
"def miller_rabin(n):\n",
" for O in range(k):\n",
" d = n-1\n",
" a = randint(2,n-2)\n",
" x = (a**d) % "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Integer factorisation\n",
"Given an integer, find its prime factors"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The factors of 641361 are [3, 7, 7, 4363], verified\n",
"Manual test: True\n"
]
}
],
"source": [
"# Brute force solution\n",
"def prime_factors(n):\n",
" i = 2\n",
" factors = []\n",
" while i * i <= n:\n",
" if n % i:\n",
" i += 1\n",
" else:\n",
" n //= i\n",
" factors.append(i)\n",
" if n > 1:\n",
" factors.append(n)\n",
" return factors\n",
"\n",
"# Check if the numbers in array a is the factors of n\n",
"def factor_test(a, n):\n",
" k = 1\n",
" for i in factors:\n",
" k=k*i\n",
" return k==n\n",
"\n",
"n = 641361\n",
"factors = prime_factors(n)\n",
"print(f\"The factors of {n} are {factors}, {'verified' if factor_test(factors, n) else 'ERROR'}\")\n",
"\n",
"print(\"Manual test:\", factor_test([3, 7, 7, 4363], 641361))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Discrete logarithm problem\n",
"Given a prime `p` and an integer `y` with `0 < y < p`, find `x` such that \n",
"```\n",
"y = g^x mod p\n",
"```\n",
"\n",
"No polynomial algorithims exists, but \"Baby-step giant-step\" is a reasonable one. \n",
"\n",
"Sources:\n",
"- https://stackoverflow.com/a/1832648/5976426\n",
"- https://en.wikipedia.org/wiki/Baby-step_giant-step\n",
"- https://gist.github.com/0xTowel/b4e7233fc86d8bb49698e4f1318a5a73"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x = 2570\n",
"y = g^x mod p ==> 34 = 7324^2570 mod 4363\n",
"Test: True\n"
]
}
],
"source": [
"from math import ceil, sqrt\n",
"\n",
"def bsgs(g, y, p):\n",
" '''\n",
" Solve for x in y = g^x mod p given a prime p.\n",
" If p is not prime, you shouldn't use BSGS anyway.\n",
" '''\n",
" N = ceil(sqrt(p - 1)) # phi(p) is p-1 if p is prime\n",
"\n",
" # Store hashmap of g^{1...m} (mod p). Baby step.\n",
" tbl = {pow(g, i, p): i for i in range(N)}\n",
"\n",
" # Precompute via Fermat's Little Theorem\n",
" c = pow(g, N * (p - 2), p)\n",
"\n",
" # Search for an equivalence in the table. Giant step.\n",
" for j in range(N):\n",
" h = (y * pow(c, j, p)) % p\n",
" if h in tbl:\n",
" return j * N + tbl[h]\n",
"\n",
" # Solution not found\n",
" return None\n",
"\n",
"def disc_log_test(y, g, x, p):\n",
" return y == (g**x) % p\n",
"\n",
"#y = 355407489\n",
"#g = 7894352216\n",
"#p = 604604729 # Must be prime\n",
"\n",
"# y = g^x mod p\n",
"y = 34\n",
"g = 7324\n",
"p = 4363 # Must be prime\n",
"\n",
"x = bsgs(g, y, p)\n",
"\n",
"print(f\"x = {x}\")\n",
"\n",
"print(f\"y = g^x mod p ==> {y} = {g}^{x} mod {p}\")\n",
"\n",
"# Don't run the test with big numbers!\n",
"if x < 10000: print(f\"Test: {disc_log_test(y,g,x,p)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Block ciphers\n",
"\n",
"Notation:\n",
"\n",
"- `P`: Plaintext block (length n bits) \n",
"- `C`: Ciphertext block (length n bits) \n",
"- `K` : Key (length k bits)\n",
"- `C = E(P, K)`: Encryption function \n",
"- `P = D(C, K)`: Decryption function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
"54\n"
]
}
],
"source": [
"# Discarded code\n",
"\n",
"def z(n):\n",
" return [i for i in range(n)]\n",
"print(z(10))\n",
"\n",
"n = 81\n",
"zn = z(n)\n",
"rel_primes = list(filter(lambda x: is_relative_prime(x,n), zn))\n",
"print(len(rel_primes))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading…
Cancel
Save