|
|
@ -1,5 +1,12 @@ |
|
|
|
{ |
|
|
|
"cells": [ |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": null, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [], |
|
|
|
"source": [] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "markdown", |
|
|
|
"metadata": {}, |
|
|
@ -223,9 +230,7 @@ |
|
|
|
"metadata": {}, |
|
|
|
"source": [ |
|
|
|
"# Euler function φ and Z*n\n", |
|
|
|
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n", |
|
|
|
"\n", |
|
|
|
"> $\\phi(16) = \\phi(2^{4}) = 16*\\left(1-\\frac{1}{2}\\right)$" |
|
|
|
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n" |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
@ -593,14 +598,13 @@ |
|
|
|
"# Square and multiply\n", |
|
|
|
"from math import log, floor\n", |
|
|
|
"\n", |
|
|
|
"def square_and_multiply(y,e,n, verbose=True):\n", |
|
|
|
"def square_and_multiply(y,e,n, verbose=False):\n", |
|
|
|
" # prep\n", |
|
|
|
" e_bin = bin(e)[:1:-1] # e0, e1, e2, e3, ... , ek\n", |
|
|
|
" k = len(e_bin)\n", |
|
|
|
" z = 1\n", |
|
|
|
" yi = y\n", |
|
|
|
" indices = []\n", |
|
|
|
" # -------------\n", |
|
|
|
"\n", |
|
|
|
" for i in range(k):\n", |
|
|
|
" ei = int(e_bin[i])\n", |
|
|
@ -611,12 +615,10 @@ |
|
|
|
" if ei:\n", |
|
|
|
" indices.append(i)\n", |
|
|
|
"\n", |
|
|
|
" # post calc\n", |
|
|
|
" mults = str(e_bin).count(\"1\") - 1\n", |
|
|
|
" squarings = floor( log(e, 2) )\n", |
|
|
|
" # -------------\n", |
|
|
|
"\n", |
|
|
|
" if verbose:\n", |
|
|
|
" mults = str(e_bin).count(\"1\") - 1\n", |
|
|
|
" squarings = floor( log(e, 2) )\n", |
|
|
|
"\n", |
|
|
|
" print(f\"{' * '.join([f'{y}^({2**i})' for i in indices])}\")\n", |
|
|
|
" print(f\"squarings: {squarings}\")\n", |
|
|
|
" print(f\"mults: {mults}\")\n", |
|
|
@ -630,7 +632,7 @@ |
|
|
|
"e = 102900819\n", |
|
|
|
"n = 604604729\n", |
|
|
|
"\n", |
|
|
|
"z = square_and_multiply(y,e,n, True)\n", |
|
|
|
"z = square_and_multiply(y,e,n, verbose=True)\n", |
|
|
|
"\n", |
|
|
|
"print(f\"{y}^{e} mod({n}) = {z}\")" |
|
|
|
] |
|
|
@ -702,16 +704,144 @@ |
|
|
|
"cell_type": "markdown", |
|
|
|
"metadata": {}, |
|
|
|
"source": [ |
|
|
|
"# Block ciphers\n", |
|
|
|
"# RSA\n", |
|
|
|
"\n", |
|
|
|
"### Key generation\n", |
|
|
|
"\n", |
|
|
|
"1. Let $p$ and $q$ be distinct prime numbers, randomly chosen from the set of all prime numbers of a certain size.\n", |
|
|
|
"2. Compute $n = pq$.\n", |
|
|
|
"3. Select $e$ randomly with $gcd(e, \\varphi(n)) = 1$.\n", |
|
|
|
"4. Compute $d = e−1 \\mod \\varphi(n)$.\n", |
|
|
|
"5. The public key is the pair $n$ and $e$.\n", |
|
|
|
"6. The private key consists of the values $p$, $q$ and $d$.\n", |
|
|
|
"\n", |
|
|
|
"### Encryption\n", |
|
|
|
"\n", |
|
|
|
"The public key for encryption is $KE = (n, e)$\n", |
|
|
|
"1. Input is any value $M$ where $0 < M < n$. \n", |
|
|
|
"2. Compute $C = E(M,KE) = Me mod n$.\n", |
|
|
|
"\n", |
|
|
|
"### Decryption\n", |
|
|
|
"\n", |
|
|
|
"The private key for decryption is KD = d (values p and q are not used here).\n", |
|
|
|
"1. Compute D(C,KD) = Cd mod n = M." |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": 24, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"name": "stdout", |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"p=43, q=59, n=2537, 𝜑(n)=2436, e=5, d=1949\n", |
|
|
|
"\n", |
|
|
|
"Public key: n=2537, e=5\n", |
|
|
|
"Private key: p=43, q=59, d=1949\n", |
|
|
|
"\n", |
|
|
|
"{'n': 2537, 'e': 5, 'p': 43, 'q': 59, 'd': 1949}\n" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|
"source": [ |
|
|
|
"import random\n", |
|
|
|
"\n", |
|
|
|
"def rsa_keygen(p=None, q=None, e=None, prime_range=1000, verbose=False):\n", |
|
|
|
" # Generate a set of primes. In practice, this should be\n", |
|
|
|
" # a large number of large primes.\n", |
|
|
|
" primes = [i for i in range(0,prime_range) if is_prime(i)]\n", |
|
|
|
"\n", |
|
|
|
"Notation:\n", |
|
|
|
" if not p: p = random.choice(primes)\n", |
|
|
|
" if not q: q = random.choice(primes)\n", |
|
|
|
" n = p*q\n", |
|
|
|
"\n", |
|
|
|
"- `P`: Plaintext block (length n bits) \n", |
|
|
|
"- `C`: Ciphertext block (length n bits) \n", |
|
|
|
"- `K` : Key (length k bits)\n", |
|
|
|
"- `C = E(P, K)`: Encryption function \n", |
|
|
|
"- `P = D(C, K)`: Decryption function\n", |
|
|
|
"- `IV`: Initialisation vector" |
|
|
|
" # Euler function 𝜑(n) \n", |
|
|
|
" phi_n = totient(n)\n", |
|
|
|
"\n", |
|
|
|
" # Select e randomly with gcd(e, φ(n)) = 1.\n", |
|
|
|
" if not e: e = random.randint(1, phi_n)\n", |
|
|
|
" while not gcd(e, phi_n) == 1:\n", |
|
|
|
" e = random.randint(1,phi_n)\n", |
|
|
|
"\n", |
|
|
|
" # Compute d = e−1 mod φ(n).\n", |
|
|
|
" d = inverse(e, phi_n)\n", |
|
|
|
" \n", |
|
|
|
" if verbose:\n", |
|
|
|
" print(f\"p={p}, q={q}, n={n}, 𝜑(n)={phi_n}, e={e}, d={d}\\n\")\n", |
|
|
|
" print(f\"Public key: n={n}, e={e}\")\n", |
|
|
|
" print(f\"Private key: p={p}, q={q}, d={d}\\n\")\n", |
|
|
|
"\n", |
|
|
|
" return {\"n\":n, \"e\":e, \"p\":p, \"q\":q, \"d\":d}\n", |
|
|
|
"\n", |
|
|
|
"# Example from slides\n", |
|
|
|
"rsa_keys = rsa_keygen(p=43, q=59, e=5, verbose=True)\n", |
|
|
|
"\n", |
|
|
|
"# Random keys\n", |
|
|
|
"#rsa_keys = rsa_keygen(verbose=True)\n", |
|
|
|
"print(rsa_keys)" |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": 22, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"name": "stdout", |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"C = M^e (mod n) = 50^102900819 (mod 604604729) = 2488\n", |
|
|
|
"\n", |
|
|
|
"Ciphertext: 2488\n" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|
"source": [ |
|
|
|
"def rsa_encrypt(M, rsa_keys):\n", |
|
|
|
" # e and n are the public key\n", |
|
|
|
" e = rsa_keys['e']\n", |
|
|
|
" n = rsa_keys['n']\n", |
|
|
|
"\n", |
|
|
|
" # C = M^e (mod n)\n", |
|
|
|
" return square_and_multiply(M,e,n)\n", |
|
|
|
"\n", |
|
|
|
"M = 50\n", |
|
|
|
"C = rsa_encrypt(M, rsa_keys)\n", |
|
|
|
"print(f\"C = M^e (mod n) = {M}^{e} (mod {n}) = {C}\\n\")\n", |
|
|
|
"print(f\"Ciphertext: {C}\")" |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": 23, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"name": "stdout", |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"M = C^d (mod n) = 2488^1 (mod 604604729) = 50\n", |
|
|
|
"\n", |
|
|
|
"Message: 50\n" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|
"source": [ |
|
|
|
"def rsa_decrypt(C, rsa_keys):\n", |
|
|
|
" # private key\n", |
|
|
|
" p = rsa_keys['p']\n", |
|
|
|
" q = rsa_keys['q']\n", |
|
|
|
" d = rsa_keys['d']\n", |
|
|
|
" n = p*q\n", |
|
|
|
"\n", |
|
|
|
" # M = C^d (mod n)\n", |
|
|
|
" return square_and_multiply(C,d,n)\n", |
|
|
|
"\n", |
|
|
|
"M = rsa_decrypt(C, rsa_keys)\n", |
|
|
|
"print(f\"M = C^d (mod n) = {C}^{d} (mod {n}) = {M}\\n\")\n", |
|
|
|
"print(f\"Message: {M}\")" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|