This commit is contained in:
Johannes Røsvik 2020-05-24 14:46:09 +02:00
parent 3b934c43c2
commit 5fca4cd283
No known key found for this signature in database
GPG Key ID: 8A47E30339E13FFD
1 changed files with 149 additions and 19 deletions

View File

@ -1,5 +1,12 @@
{ {
"cells": [ "cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -223,9 +230,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Euler function φ and Z*n\n", "# Euler function φ and Z*n\n",
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n", "From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n"
"\n",
"> $\\phi(16) = \\phi(2^{4}) = 16*\\left(1-\\frac{1}{2}\\right)$"
] ]
}, },
{ {
@ -593,14 +598,13 @@
"# Square and multiply\n", "# Square and multiply\n",
"from math import log, floor\n", "from math import log, floor\n",
"\n", "\n",
"def square_and_multiply(y,e,n, verbose=True):\n", "def square_and_multiply(y,e,n, verbose=False):\n",
" # prep\n", " # prep\n",
" e_bin = bin(e)[:1:-1] # e0, e1, e2, e3, ... , ek\n", " e_bin = bin(e)[:1:-1] # e0, e1, e2, e3, ... , ek\n",
" k = len(e_bin)\n", " k = len(e_bin)\n",
" z = 1\n", " z = 1\n",
" yi = y\n", " yi = y\n",
" indices = []\n", " indices = []\n",
" # -------------\n",
"\n", "\n",
" for i in range(k):\n", " for i in range(k):\n",
" ei = int(e_bin[i])\n", " ei = int(e_bin[i])\n",
@ -611,12 +615,10 @@
" if ei:\n", " if ei:\n",
" indices.append(i)\n", " indices.append(i)\n",
"\n", "\n",
" # post calc\n", " if verbose:\n",
" mults = str(e_bin).count(\"1\") - 1\n", " mults = str(e_bin).count(\"1\") - 1\n",
" squarings = floor( log(e, 2) )\n", " squarings = floor( log(e, 2) )\n",
" # -------------\n",
"\n", "\n",
" if verbose:\n",
" print(f\"{' * '.join([f'{y}^({2**i})' for i in indices])}\")\n", " print(f\"{' * '.join([f'{y}^({2**i})' for i in indices])}\")\n",
" print(f\"squarings: {squarings}\")\n", " print(f\"squarings: {squarings}\")\n",
" print(f\"mults: {mults}\")\n", " print(f\"mults: {mults}\")\n",
@ -630,7 +632,7 @@
"e = 102900819\n", "e = 102900819\n",
"n = 604604729\n", "n = 604604729\n",
"\n", "\n",
"z = square_and_multiply(y,e,n, True)\n", "z = square_and_multiply(y,e,n, verbose=True)\n",
"\n", "\n",
"print(f\"{y}^{e} mod({n}) = {z}\")" "print(f\"{y}^{e} mod({n}) = {z}\")"
] ]
@ -702,16 +704,144 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Block ciphers\n", "# RSA\n",
"\n", "\n",
"Notation:\n", "### Key generation\n",
"\n", "\n",
"- `P`: Plaintext block (length n bits) \n", "1. Let $p$ and $q$ be distinct prime numbers, randomly chosen from the set of all prime numbers of a certain size.\n",
"- `C`: Ciphertext block (length n bits) \n", "2. Compute $n = pq$.\n",
"- `K` : Key (length k bits)\n", "3. Select $e$ randomly with $gcd(e, \\varphi(n)) = 1$.\n",
"- `C = E(P, K)`: Encryption function \n", "4. Compute $d = e1 \\mod \\varphi(n)$.\n",
"- `P = D(C, K)`: Decryption function\n", "5. The public key is the pair $n$ and $e$.\n",
"- `IV`: Initialisation vector" "6. The private key consists of the values $p$, $q$ and $d$.\n",
"\n",
"### Encryption\n",
"\n",
"The public key for encryption is $KE = (n, e)$\n",
"1. Input is any value $M$ where $0 < M < n$. \n",
"2. Compute $C = E(M,KE) = Me mod n$.\n",
"\n",
"### Decryption\n",
"\n",
"The private key for decryption is KD = d (values p and q are not used here).\n",
"1. Compute D(C,KD) = Cd mod n = M."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p=43, q=59, n=2537, 𝜑(n)=2436, e=5, d=1949\n",
"\n",
"Public key: n=2537, e=5\n",
"Private key: p=43, q=59, d=1949\n",
"\n",
"{'n': 2537, 'e': 5, 'p': 43, 'q': 59, 'd': 1949}\n"
]
}
],
"source": [
"import random\n",
"\n",
"def rsa_keygen(p=None, q=None, e=None, prime_range=1000, verbose=False):\n",
" # Generate a set of primes. In practice, this should be\n",
" # a large number of large primes.\n",
" primes = [i for i in range(0,prime_range) if is_prime(i)]\n",
"\n",
" if not p: p = random.choice(primes)\n",
" if not q: q = random.choice(primes)\n",
" n = p*q\n",
"\n",
" # Euler function 𝜑(n) \n",
" phi_n = totient(n)\n",
"\n",
" # Select e randomly with gcd(e, φ(n)) = 1.\n",
" if not e: e = random.randint(1, phi_n)\n",
" while not gcd(e, phi_n) == 1:\n",
" e = random.randint(1,phi_n)\n",
"\n",
" # Compute d = e1 mod φ(n).\n",
" d = inverse(e, phi_n)\n",
" \n",
" if verbose:\n",
" print(f\"p={p}, q={q}, n={n}, 𝜑(n)={phi_n}, e={e}, d={d}\\n\")\n",
" print(f\"Public key: n={n}, e={e}\")\n",
" print(f\"Private key: p={p}, q={q}, d={d}\\n\")\n",
"\n",
" return {\"n\":n, \"e\":e, \"p\":p, \"q\":q, \"d\":d}\n",
"\n",
"# Example from slides\n",
"rsa_keys = rsa_keygen(p=43, q=59, e=5, verbose=True)\n",
"\n",
"# Random keys\n",
"#rsa_keys = rsa_keygen(verbose=True)\n",
"print(rsa_keys)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"C = M^e (mod n) = 50^102900819 (mod 604604729) = 2488\n",
"\n",
"Ciphertext: 2488\n"
]
}
],
"source": [
"def rsa_encrypt(M, rsa_keys):\n",
" # e and n are the public key\n",
" e = rsa_keys['e']\n",
" n = rsa_keys['n']\n",
"\n",
" # C = M^e (mod n)\n",
" return square_and_multiply(M,e,n)\n",
"\n",
"M = 50\n",
"C = rsa_encrypt(M, rsa_keys)\n",
"print(f\"C = M^e (mod n) = {M}^{e} (mod {n}) = {C}\\n\")\n",
"print(f\"Ciphertext: {C}\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"M = C^d (mod n) = 2488^1 (mod 604604729) = 50\n",
"\n",
"Message: 50\n"
]
}
],
"source": [
"def rsa_decrypt(C, rsa_keys):\n",
" # private key\n",
" p = rsa_keys['p']\n",
" q = rsa_keys['q']\n",
" d = rsa_keys['d']\n",
" n = p*q\n",
"\n",
" # M = C^d (mod n)\n",
" return square_and_multiply(C,d,n)\n",
"\n",
"M = rsa_decrypt(C, rsa_keys)\n",
"print(f\"M = C^d (mod n) = {C}^{d} (mod {n}) = {M}\\n\")\n",
"print(f\"Message: {M}\")"
] ]
} }
], ],