Add RSA
This commit is contained in:
parent
3b934c43c2
commit
5fca4cd283
168
TTM4135.ipynb
168
TTM4135.ipynb
|
@ -1,5 +1,12 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
@ -223,9 +230,7 @@
|
|||
"metadata": {},
|
||||
"source": [
|
||||
"# Euler function φ and Z*n\n",
|
||||
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n",
|
||||
"\n",
|
||||
"> $\\phi(16) = \\phi(2^{4}) = 16*\\left(1-\\frac{1}{2}\\right)$"
|
||||
"From slides 2020-4135-l07 - Number Theory for Public Key Cryptography\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -593,14 +598,13 @@
|
|||
"# Square and multiply\n",
|
||||
"from math import log, floor\n",
|
||||
"\n",
|
||||
"def square_and_multiply(y,e,n, verbose=True):\n",
|
||||
"def square_and_multiply(y,e,n, verbose=False):\n",
|
||||
" # prep\n",
|
||||
" e_bin = bin(e)[:1:-1] # e0, e1, e2, e3, ... , ek\n",
|
||||
" k = len(e_bin)\n",
|
||||
" z = 1\n",
|
||||
" yi = y\n",
|
||||
" indices = []\n",
|
||||
" # -------------\n",
|
||||
"\n",
|
||||
" for i in range(k):\n",
|
||||
" ei = int(e_bin[i])\n",
|
||||
|
@ -611,12 +615,10 @@
|
|||
" if ei:\n",
|
||||
" indices.append(i)\n",
|
||||
"\n",
|
||||
" # post calc\n",
|
||||
" mults = str(e_bin).count(\"1\") - 1\n",
|
||||
" squarings = floor( log(e, 2) )\n",
|
||||
" # -------------\n",
|
||||
"\n",
|
||||
" if verbose:\n",
|
||||
" mults = str(e_bin).count(\"1\") - 1\n",
|
||||
" squarings = floor( log(e, 2) )\n",
|
||||
"\n",
|
||||
" print(f\"{' * '.join([f'{y}^({2**i})' for i in indices])}\")\n",
|
||||
" print(f\"squarings: {squarings}\")\n",
|
||||
" print(f\"mults: {mults}\")\n",
|
||||
|
@ -630,7 +632,7 @@
|
|||
"e = 102900819\n",
|
||||
"n = 604604729\n",
|
||||
"\n",
|
||||
"z = square_and_multiply(y,e,n, True)\n",
|
||||
"z = square_and_multiply(y,e,n, verbose=True)\n",
|
||||
"\n",
|
||||
"print(f\"{y}^{e} mod({n}) = {z}\")"
|
||||
]
|
||||
|
@ -702,16 +704,144 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Block ciphers\n",
|
||||
"# RSA\n",
|
||||
"\n",
|
||||
"Notation:\n",
|
||||
"### Key generation\n",
|
||||
"\n",
|
||||
"- `P`: Plaintext block (length n bits) \n",
|
||||
"- `C`: Ciphertext block (length n bits) \n",
|
||||
"- `K` : Key (length k bits)\n",
|
||||
"- `C = E(P, K)`: Encryption function \n",
|
||||
"- `P = D(C, K)`: Decryption function\n",
|
||||
"- `IV`: Initialisation vector"
|
||||
"1. Let $p$ and $q$ be distinct prime numbers, randomly chosen from the set of all prime numbers of a certain size.\n",
|
||||
"2. Compute $n = pq$.\n",
|
||||
"3. Select $e$ randomly with $gcd(e, \\varphi(n)) = 1$.\n",
|
||||
"4. Compute $d = e−1 \\mod \\varphi(n)$.\n",
|
||||
"5. The public key is the pair $n$ and $e$.\n",
|
||||
"6. The private key consists of the values $p$, $q$ and $d$.\n",
|
||||
"\n",
|
||||
"### Encryption\n",
|
||||
"\n",
|
||||
"The public key for encryption is $KE = (n, e)$\n",
|
||||
"1. Input is any value $M$ where $0 < M < n$. \n",
|
||||
"2. Compute $C = E(M,KE) = Me mod n$.\n",
|
||||
"\n",
|
||||
"### Decryption\n",
|
||||
"\n",
|
||||
"The private key for decryption is KD = d (values p and q are not used here).\n",
|
||||
"1. Compute D(C,KD) = Cd mod n = M."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"p=43, q=59, n=2537, 𝜑(n)=2436, e=5, d=1949\n",
|
||||
"\n",
|
||||
"Public key: n=2537, e=5\n",
|
||||
"Private key: p=43, q=59, d=1949\n",
|
||||
"\n",
|
||||
"{'n': 2537, 'e': 5, 'p': 43, 'q': 59, 'd': 1949}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"\n",
|
||||
"def rsa_keygen(p=None, q=None, e=None, prime_range=1000, verbose=False):\n",
|
||||
" # Generate a set of primes. In practice, this should be\n",
|
||||
" # a large number of large primes.\n",
|
||||
" primes = [i for i in range(0,prime_range) if is_prime(i)]\n",
|
||||
"\n",
|
||||
" if not p: p = random.choice(primes)\n",
|
||||
" if not q: q = random.choice(primes)\n",
|
||||
" n = p*q\n",
|
||||
"\n",
|
||||
" # Euler function 𝜑(n) \n",
|
||||
" phi_n = totient(n)\n",
|
||||
"\n",
|
||||
" # Select e randomly with gcd(e, φ(n)) = 1.\n",
|
||||
" if not e: e = random.randint(1, phi_n)\n",
|
||||
" while not gcd(e, phi_n) == 1:\n",
|
||||
" e = random.randint(1,phi_n)\n",
|
||||
"\n",
|
||||
" # Compute d = e−1 mod φ(n).\n",
|
||||
" d = inverse(e, phi_n)\n",
|
||||
" \n",
|
||||
" if verbose:\n",
|
||||
" print(f\"p={p}, q={q}, n={n}, 𝜑(n)={phi_n}, e={e}, d={d}\\n\")\n",
|
||||
" print(f\"Public key: n={n}, e={e}\")\n",
|
||||
" print(f\"Private key: p={p}, q={q}, d={d}\\n\")\n",
|
||||
"\n",
|
||||
" return {\"n\":n, \"e\":e, \"p\":p, \"q\":q, \"d\":d}\n",
|
||||
"\n",
|
||||
"# Example from slides\n",
|
||||
"rsa_keys = rsa_keygen(p=43, q=59, e=5, verbose=True)\n",
|
||||
"\n",
|
||||
"# Random keys\n",
|
||||
"#rsa_keys = rsa_keygen(verbose=True)\n",
|
||||
"print(rsa_keys)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C = M^e (mod n) = 50^102900819 (mod 604604729) = 2488\n",
|
||||
"\n",
|
||||
"Ciphertext: 2488\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def rsa_encrypt(M, rsa_keys):\n",
|
||||
" # e and n are the public key\n",
|
||||
" e = rsa_keys['e']\n",
|
||||
" n = rsa_keys['n']\n",
|
||||
"\n",
|
||||
" # C = M^e (mod n)\n",
|
||||
" return square_and_multiply(M,e,n)\n",
|
||||
"\n",
|
||||
"M = 50\n",
|
||||
"C = rsa_encrypt(M, rsa_keys)\n",
|
||||
"print(f\"C = M^e (mod n) = {M}^{e} (mod {n}) = {C}\\n\")\n",
|
||||
"print(f\"Ciphertext: {C}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"M = C^d (mod n) = 2488^1 (mod 604604729) = 50\n",
|
||||
"\n",
|
||||
"Message: 50\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def rsa_decrypt(C, rsa_keys):\n",
|
||||
" # private key\n",
|
||||
" p = rsa_keys['p']\n",
|
||||
" q = rsa_keys['q']\n",
|
||||
" d = rsa_keys['d']\n",
|
||||
" n = p*q\n",
|
||||
"\n",
|
||||
" # M = C^d (mod n)\n",
|
||||
" return square_and_multiply(C,d,n)\n",
|
||||
"\n",
|
||||
"M = rsa_decrypt(C, rsa_keys)\n",
|
||||
"print(f\"M = C^d (mod n) = {C}^{d} (mod {n}) = {M}\\n\")\n",
|
||||
"print(f\"Message: {M}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue