Finding a generator of Z*p
This commit is contained in:
parent
f0279f0a5d
commit
f404704d7d
|
@ -130,7 +130,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -179,15 +179,15 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"φ(16) = 8 since the 8 items in Z*16 are each relatively prime to 16.\n",
|
||||
"Z*16 = [1, 3, 5, 7, 9, 11, 13, 15]\n"
|
||||
"φ(21) = 12 since the 12 items in Z*21 are each relatively prime to 21.\n",
|
||||
"Z*21 = [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@ -206,7 +206,7 @@
|
|||
" r.append(i)\n",
|
||||
" return r\n",
|
||||
"\n",
|
||||
"n = 16\n",
|
||||
"n = 21\n",
|
||||
"ar = z_star(n)\n",
|
||||
"e = len(ar)\n",
|
||||
"print(f\"φ({n}) = {e} since the {e} items in Z*{n} are each relatively prime to {n}.\")\n",
|
||||
|
@ -233,7 +233,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -275,7 +275,50 @@
|
|||
" return (int)(result)\n",
|
||||
"\n",
|
||||
"n = 1125\n",
|
||||
"print(f\"𝜑({n}) = {totient(1125)}\")"
|
||||
"print(f\"𝜑({n}) = {totient(n)}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Finding a generator of Z*p\n",
|
||||
"- https://crypto.stanford.edu/pbc/notes/numbertheory/gen.html\n",
|
||||
"- Lecture 2, page 19\n",
|
||||
"\n",
|
||||
"A generator of $Z^∗p$ is an element of order $p − 1$\n",
|
||||
"\n",
|
||||
"To find a generator of Z∗p we can choose a value g and test it as follows:\n",
|
||||
"1. compute all the distinct prime factors of p − 1 and call them f1,f2,...,fr\n",
|
||||
"2. then g is a generator as long as $g^{\\frac{p−1}{fi}} \\neq 1 \\mod(p)$ for $i = 1,2,,...,r$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Is 3 a generator for Z*4? True\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Finding a generator g of Z∗p\n",
|
||||
"def is_generator(p, g):\n",
|
||||
" pf = prime_factors(p-1)\n",
|
||||
" for f in pf:\n",
|
||||
" if (g**((p-1)/f))%p == 1:\n",
|
||||
" return False\n",
|
||||
" return True\n",
|
||||
"\n",
|
||||
"g = 3 # Generator\n",
|
||||
"p = 4 # Z*p\n",
|
||||
"\n",
|
||||
"print(f\"Is {g} a generator for Z*{p}? {is_generator(p, g)}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue